17 Section 4.1: Right Triangles

Example 1

Use the triangle below to evaluate the following. Make sure your answers are in reduced fractions.

Right triangle with side lengths 7 and 12
Right triangle with side lengths 7 and 12

a. [latex]\sin(A)[/latex]

b. [latex]\cos(A)[/latex]

c. [latex]\cos(C)[/latex]

d. [latex]\sin(C)[/latex]

Show Solution

First, we will find the hypotenuse ‘c’ using the pythagorean theorem. Since, [latex]12^2+7^2 = c^2[/latex] which gives [latex]c^2 = 193[/latex], so [latex]c = \sqrt{193}[/latex]. Then,

a. [latex]\sin(A) = \frac{opp}{hyp} = \frac{12}{\sqrt{193}}[/latex]

b.[latex]\cos(A) = \frac{adj}{hyp} = \frac{7}{\sqrt{193}}[/latex]

c. [latex]\cos(C) = \frac{adj}{hyp} = \frac{12}{\sqrt{193}}[/latex]

d. [latex]\sin(C) = \frac{opp}{hyp} = \frac{7}{\sqrt{193}}[/latex]

Example 2

For each of the following scenarios determine all missing angles and sides. Simplify if possible.

a. A right triangle with one non-right angle of measure [latex]23^\circ[/latex] and hypotenuse length [latex]12[/latex]

b. A right triangle with one non-right angle of measure [latex]72^\circ[/latex] and side length opposite that angle length [latex]6[/latex].

 

Show Solution

a. Let us first draw a triangle and label the sides.

First we will solve for the missing angle [latex]\alpha[/latex]. Since the interior angles of a triangle must add up to [latex]180^\circ[/latex] and the right angle has a measure a measure of [latex]90^\circ[/latex], then [latex]\alpha + 23 = 90[/latex]. Solving for [latex]\alpha  = 67^{\circ}[/latex].

Now we solve for side a by using the definition of sine. So, [latex]\sin(23^\circ) = \frac{opp}{hyp} = \frac{a}{12}[/latex]. Then we multiply on 12 to both sides to get [latex]a = 12\sin(23^\circ) \approx = 4.68[/latex].

Next we solve for side b by using the definition of cosine. So, [latex]\cos(23^\circ) = \frac{adj}{hyp} = \frac{a}{12}[/latex]. Then we multiply on 12 to both sides to get [latex]b = 12\cos(23^\circ) \approx = 11.05[/latex].

b. Let us first draw a triangle and label the sides.

First we will solve for the missing angle [latex]\alpha[/latex]. Since the interior angles of a triangle must add up to [latex]180^\circ[/latex] and the right angle has a measure a measure of [latex]90^\circ[/latex], then [latex]\alpha + 72 = 90[/latex]. Solving for [latex]\alpha  = 18^{\circ}[/latex].

Now we solve for the hypotenuse by using the definition of sine. So, [latex]\sin(72^\circ) = \frac{opp}{hyp} = \frac{6}{c}[/latex]. Then we multiply on c on both sides to get [latex]c \cdot \sin(72^\circ) = 6[/latex]. Then divide by [latex]\sin(72^\circ)[/latex] on both sides to get [latex]c = \frac{6}{\sin(72^\circ)} \approx 6.308[/latex].

Next we will solve for side b. Using the definition of cosine we have [latex]\cos(72^\circ) = \frac{adj}{hyp} = \frac{\frac{6}{\sin(72^\circ)}}{b}[/latex]. Then we multiply by b on both sides to get [latex]b \cdot \cos(72^\circ) = \frac{6}{\sin(72^\circ)}[/latex]. Then dividing both sides by [latex]\cos(72^\circ)[/latex] we get  [latex]b= \frac{\frac{6}{\sin(72^\circ)}}{\cos(72^\circ)} = \frac{6\cos(62^\circ)}{\sin(72^\circ)} \approx 1.95[/latex].

Example 3

Your friend is bungee jumping off a a building in Durango. You decide to find how the tall the building. You are currently standing 200 feet from the base of the building and have an angle of elevation of is 58[latex]^\circ[/latex]. How tall in feet is the building?
Show Solution

Let us first draw a picture.

We want to solve for tall the building is which is length ‘x’. First, we determine the length of the hypotenuse y using cosine. So, [latex]\cos(58^\circ) = \frac{200}{y}[/latex]. Solving for y we get [latex]y = \frac{200}{\cos(58^\circ)}[/latex]. So, then we solve for x by using sine. Thus, [latex]\sin(58^\circ) = \frac{x}{\frac{200}{\cos(58^\circ)}}[/latex]. Isolating x we get [latex]x = \frac{200}{\cos(58^\circ)} \cdot \sin(58^\circ) = \frac{200\sin(58^\circ)}{\cos(58^\circ)}  \approx[/latex] 320.07 feet. So, the building is approximately 320.06 feet tall.

License

Additional Examples Copyright © by Marcela Gutierrez and Sherri Spriggs. All Rights Reserved.

Share This Book