5 Section 1.6 Composite Functions

1. Let [latex]f(x)=x^2+3[/latex], and let [latex]g(x)=\frac{2}{x}[/latex].

a. Find and simplify [latex]f(1-x)[/latex].

b. Find and simplify [latex]f(g(x))[/latex].

c. Find and simplify [latex]g(f(x))[/latex].

 

Show Solution

Answers

a.

[latex]f(1-x)=(1-x)^2+3[/latex]

[latex]f(1-x)=(1-x)(1-x)+3[/latex]

[latex]f(1-x)=x^2-2x+4[/latex]

b.

[latex]f(g(x))=f(\frac{2}{x})[/latex]

[latex]f(g(x))=(\frac{2}{x})^2+3[/latex]

[latex]f(g(x))=\frac{4}{x^2}+3[/latex]

c.

[latex]g(f(x))=\frac{2}{x^2+3}[/latex]

 

2.  For each function below, find two simpler functions [latex]f[/latex] and [latex]g[/latex] so that the given functions can be written as [latex]f(g(x))[/latex].

Note: you cannot use [latex]g(x)=x[/latex].

a. [latex]h(x)=\frac{3}{\sqrt{x+1}}[/latex]

b. [latex]j(x)=\sqrt[3]{\frac{2x}{7}}[/latex]

c. [latex]k(x)=(x^2-3)^4+1[/latex]

 

Show Solution

Answers

a. One option: [latex]f(x)=\frac{3}{x}[/latex] and [latex]g(x)=\sqrt{x+1}[/latex]. Another option: [latex]f(x)=\frac{3}{\sqrt{x}}[/latex] and [latex]g(x)=x+1[/latex].

b. One option: [latex]f(x)=\sqrt[3]{x}[/latex] and [latex]g(x)=\frac{2x}{7}[/latex]. Another option: [latex]f(x)=\sqrt[3]{\frac{x}{7}}[/latex] and [latex]g(x)=2x[/latex].

c. One option: [latex]f(x)=x^4+1[/latex] and [latex]g(x)=x^2-3[/latex]. Another option: [latex]f(x)=x+1[/latex] and [latex]g(x)=(x^2-3)^4[/latex].

 

3. An oil spill is spreading in a roughly circular shape. The radius, [latex]r[/latex], is growing by 10 feet per hour.

a. Construct a function [latex]r[/latex] that represents the radius [latex]r[/latex] as a function of time [latex]t[/latex], in hours since the oil spill.

b. The area [latex]A[/latex] of the spill is a function of the radius [latex]r[/latex], given by [latex]A(r)=\pi r^2[/latex]. Determine a formula such that [latex]A \circ r[/latex].

c. Explain the meaning of the formula you found in part a.

 

Show Solution

Answers

a. [latex]r(t)=10t[/latex]

b. [latex]A(t)=\pi(10t)^2=100\pi t^2[/latex]

c. The formula gives the area of the oil spill, ft2, in terms of [latex]t[/latex], time in hours.

4. Use the given graphs to compute the following quantities, if possible.

Graph of a piecewise function for use in composition

Graph of a piecewise function for use in composition

a. [latex]f(g(4))[/latex]

b. [latex]f(g(-4))[/latex]

c. [latex]g(f(-6))[/latex]

d. [latex]g(f(6))[/latex]

 

Show Solution

Answers

a. First, find [latex]g(4)[/latex] which is 6. Then compute[latex]f(6)[/latex] which is 2. So [latex]f(g(4))=2[/latex].

b. First, find [latex]g(-4)[/latex] which is 4. Then compute [latex]f(4)[/latex] which is 4. So [latex]f(g(-4))=4[/latex].

c. First, find [latex]f(-6)[/latex] which is -2. Then compute [latex]g(-2)[/latex] which is 0. So [latex]g(f(-6))=0[/latex].

d. First, find [latex]f(6)[/latex] which is 2. Then computer [latex]g(2)[/latex] which is 4. So [latex]g(f(6))=4[/latex].

 

License

Additional Examples Copyright © by Marcela Gutierrez and Sherri Spriggs. All Rights Reserved.

Share This Book