2 Section 1.2: Functions: Modeling Relationships

Example 1

A model rocket is launched in the air the height of the rocket, in feet, as a function of time in seconds is given by the formula [latex]h(t) = -16t^2-200t+336[/latex].  Determine a reasonable domain and range for this model. Hint: Use Desmos to graph the function.

Show Solution

Reasonable domain: [latex][0,2][/latex]

Reasonable range: [latex][0,336][/latex]

Example 2

For the graph of [latex]f(x)[/latex] below determine the following:

a. [latex]f(4)[/latex]

b. Solve where [latex]f(x) = 1[/latex]

c. Domain

d. Range

Show Solution

a. [latex]f(4) = -3[/latex]

b. [latex]x = 0, -6[/latex]

c. Domain: [latex](-\infty, \infty)[/latex]

d. Range: [latex](-\infty, 4][/latex]

Example 3

For the function [latex]f(x) = 8x^2 -7x +3[/latex]:

a. Evaluate [latex]f(-2)[/latex]

b. Evaluate [latex]f(3)[/latex]

c. Solve [latex]f(x) = 4[/latex]

d. Find [latex]f(h)[/latex]

e. Find [latex]f(x+h)[/latex]

Show Solution

a. [latex]f(-2) = 49[/latex]

b. [latex]f(3) = 54[/latex]

c. [latex]x = \frac{-1}{8}[/latex] and [latex]x = 1[/latex]

d. [latex]f(h) = 8h^2-7h+3[/latex]

e. [latex]f(x+h) = 8(x+h)^2 - 7(x+h) + 3 = 8(x^2+2xh+h^2) - 7x-7h + 3 = 8x^2+16xh+h^2-7x-7h+3[/latex]

Example 4

Find the domain of each of the following functions below:

a. [latex]f(x) = \frac{x-2}{x+5}[/latex]

b. [latex]g(x) = \frac{x^2+1}{x^2-2x-15}[/latex]

c. [latex]h(x) = \sqrt{-x+6}[/latex]

Show Solution

a. Domain: [latex](-\infty, -5) \cup (-5, \infty)[/latex]

b. Domain: [latex](-\infty, -3) \cup (-3,5) \cup (5, \infty)[/latex]

c. Domain: [latex](-\infty, 6][/latex]

Example 5

The table below represents the amount of money made per week after working h hours.

h 6 12.5 13 16 4 60 70
P 90 180 180 240 60 900 1050

a. Is [latex]P[/latex] a function of [latex]h[/latex]?

b. Let [latex]P = f(h)[/latex] denote the amount of made made after [latex]h[/latex] hours. Evaluate and interpret [latex]f(60)[/latex].

c. Solve [latex]f(t) = 180[/latex].

d. Interpret your results from part c.

Show Solution

a. Yes
b. [latex]f(60) = 900[/latex]. If a person works 60 hours a week they will make $900.
c. t = 12.5 and t = 13.
d. If a person works 12.5 hours or 13 hours they will make $180.

 

License

Additional Examples Copyright © by Marcela Gutierrez and Sherri Spriggs. All Rights Reserved.

Share This Book